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Abstract We present and discuss a variational single-
product approximation to the van der Waals dispersion
interaction leading to a simple formula for C6 that seems
capable to give more than 99% of the ‘exact’ value. The
formula is derived from Hylleraas’ variational principle
in the tensor product space of the interacting molecules
and therefore enjoys bounding properties. The formula
has been tested by computing the C6 dispersion con-
stants of H–H, and, at Full CI level, of the following
systems: He–He, He–Li, Li–Li, LiH–LiH, HF–HF. Con-
nections with the London formula are discussed.

1 Introduction

The interaction of two molecules A, B at large distance
R can be treated as a perturbation theory (PT) problem
in the tensor product space of the interacting molecules
(A–B exchange neglected) [1,2]. In particular, the first
order PT equation for the dispersion interaction can be
written as follows [3]:
[
(ĤA − EA

0 ) + (ĤB − EB
0 )

]
Φd = −(QA

1 − Q̂A)ΦA
0

× (QB
1 − Q̂B)ΦB

0 (1)

where

ĤA|ΦA
0 〉 = EA

0 |ΦA
0 〉; ĤB|ΦB

0 〉 = EB
0 |ΦB

0 〉
QA

1 = 〈ΦA
0 Q̂A|ΦA

0 〉A; QB
1 = 〈ΦB

0 Q̂B|ΦB
0 〉B

(2)
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where Q̂A, Q̂B are multipole operators centered on A,
B, and 〈 | 〉A, 〈 | 〉B mean scalar product in the space of
molecule A and B, respectively. (for C6, Q̂ = aµ, dipole
lenght operator). In order to simplify the notation we
introduce the shorthands:

θA = |(QA
1 − Q̂A)ΦA

0 〉, θB = |(QB
1 − Q̂B)ΦB

0 〉 (3)

so the r.h.s. of Eq. (1) can be written as −θAθB. The
dispersion energy can be computed as a sum of contri-
butions of the type:

〈Φd|θAθB〉AB (4)

where 〈|〉AB is the scalar product in the (tensor) product
space of the interacting molecules. The exact solution of
Eq. (1) can be represented in several ways [3], the most
important in this context being the Casimir–Polder inte-
gral representation [4]:

Φd = − 2
π

+∞∫

0

(
ĤA − EA

0

(ĤA − EA
0 )2 + ω2

θA

)

×
(

ĤB − EB
0

(ĤB − EB
0 )2 + ω2

θB

)
dω (5)

i.e. by a linear superposition of products of functions
of molecule A and functions of molecule B labelled by
the continuous variable ω. In a series of papers [5–8],
Kutzelnigg and collaborators introduced the natural
state expansion:

Φd =
∑

i

di uA
i vB

i , i = 1, 2, . . . (6)

uA
i , vB

i are normalized eigenfunctions of suitably
defined molecular density matrices in the supermolec-
ular system A · · · B. Expansion (6) enjoys remarkable
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convergence properties and a single term was found to
give surprisingly good accuracy for atoms [6].

In this paper we consider a single product or rank-1
approximation for Φd:

Φd ≈ −Φ̃AΦ̃B = Φ̃ (7)

where Φ̃ and its factors Φ̃A and Φ̃B are variationally
determined, and we obtain from the ansatz (7) a formula
for matrix elements (4). Equation (7) can be considered
as the expansion (6) truncated to one term and written
in a slightly different way. According to Hylleraas’ varia-
tional principle [9] we determine Φ̃A and Φ̃B minimizing
the functional (real perturbations):

Hy[Φ̃A, Φ̃B] =
〈
Φ̃AΦ̃B|ĤA − EA

0 + ĤB

− EB
0 |Φ̃AΦ̃B

〉
AB

+ 2〈Φ̃AΦ̃B|θA θB〉AB (8)

subject to the constraints:

〈Φ̃A|ΦA
0 〉A = 〈Φ̃B|ΦB

0 〉B = 0 (9)

The plan of the paper is the following: we work out the
equations determining the best Φ̃A, Φ̃B and the new
formula, we specialize the formalism to the Full CI case
(FCI) and, finally, we compute the C6 of some systems
at FCI level. A discussion is given in the last section.

2 The equations for the optimal rank-1 Φ̃

We introduce two Lagrange multipliers λA and λB to
account for the constraints (9), and write down the min-
imum conditions:

1
2

δHy

δΦ̃A
= 〈Φ̃B|Φ̃B〉B(ĤA − EA

0 )Φ̃A

+〈Φ̃B|(ĤB − EB
0 )Φ̃B〉BΦ̃A

−〈Φ̃B|θB〉BθA − λAΦA
0 = 0 (10)

1
2

δHy

δΦ̃B
= 〈Φ̃A|Φ̃A〉A(ĤB − EB

0 )Φ̃B

+〈Φ̃A|(ĤA − EA
0 )Φ̃A〉AΦ̃B

−〈Φ̃A|θA〉AθB − λBΦB
0 = 0 (11)

By left multiplying Eqs. (10,11) by ΦA
0 and ΦB

0 , respec-
tively, and integrating we find λA = λB = 0. Next, we
introduce the quantities:

ωA = 〈Φ̃A|(ĤA − EA
0 )Φ̃A〉A

〈Φ̃A|Φ̃A〉A
,

ωB = 〈Φ̃B|(ĤB − EB
0 )Φ̃B〉B

〈Φ̃B|Φ̃B〉B
(12)

that can be described as averaged excitation energies
associated to the trial functions Φ̃A, Φ̃B, and notice
that, thanks to Eq. (9), they are greater or equal to the
first excitation energy of the molecule:

ωA ≥ EA
1 − EA

0 > 0, ωB ≥ EB
1 − EB

0 > 0 (13)

The extremal conditions (11,10) can be rewritten as

(ĤA − EA
0 + ωB)Φ̃A = cBθA (14)

(ĤB − EB
0 + ωA)Φ̃B = cAθB (15)

where cA, cB stand for:

cA = 〈Φ̃B|θB〉B

〈Φ̃B|Φ̃B〉B
, cB = 〈Φ̃A|θA〉A

〈Φ̃A|Φ̃A〉A
(16)

Therefore, Φ̃A is given by the solution ξA of the
equation

(ĤA − EA
0 + ωB)ξA = θA (17)

multiplied by cB, i.e. Φ̃A = cBξA, and similarly Φ̃B. By
left multiplying Eq. (14) by Φ̃A, integrating and dividing
by 〈Φ̃A|Φ̃A〉A, we find ωA + ωB = cA cB.

The variational solution Φ̃ = −Φ̃AΦ̃B of our prob-
lem has the form

Φ̃ = −(ωA + ωB) (ĤA − EA
0 + ωB)−1θA

× (ĤB − EB
0 + ωA)−1θB (18)

and Hy[Φ̃A, Φ̃B] becomes a function of the variables
ωA and ωB that can be assumed as variational param-
eters. As concerns the quantities cA and cB, only their
product is uniquely defined; this holds as well for the
functions Φ̃A and Φ̃B.

To carry out the minimisation of (8) it is convenient
to introduce the quantities

Gσ
k (ω) = 〈θσ |(Ĥσ − Eσ

0 + ω)−k|θσ 〉σ ,

σ = A, B, k = 1, 2, . . . (19)

After little algebra we find that Eq. (8) can be written
as a sum of two terms:

Hy(ωA, ωB) = F(ωA, ωB) + V(ωA, ωB) (20)

where

F(ωA, ωB) = −(ωA + ωB) GA
1 (ωB)GB

1 (ωA) (21)

and

V(ωA, ωB) = − (ωA + ωB)

×
[
GA

1 (ωB) − (ωA + ωB)GA
2 (ωB)

]

×
[
GB

1 (ωA) − (ωA + ωB)GB
2 (ωA)

]
(22)
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As concerns the derivatives of the Hylleraas’ functional,
we easily find

∂Hy
∂ωA

= −
[
GA

1 (ωB) − (ωA + ωB)GA
2 (ωB)

]

×
{

3(ωA + ωB)2GB
3 (ωA)

− 4(ωA + ωB)GB
2 (ωA) + 2GB

1 (ωA)
}

, etc. (23)

As shown in Appendix 1, the quantity in curly braces in
the previous equation (23) cannot vanish, so the optimal
ωA, ωB are solutions of the following non linear coupled
equations:

GA
1 (ωB) − (ωA + ωB)GA

2 (ωB) = 0 (24)

GB
1 (ωA) − (ωA + ωB)GB

2 (ωA) = 0 (25)

We observe that V(ωA, ωB) defined by Eq. (22) van-
ishes at the solution of Eqs. (24 and 25); consequently,
the optimum value of Hy(ωA, ωB) is given by F(ωA, ωB)

alone when ωA, ωB fulfill Eqs. (24 and 25). Equation (21)
defines the functional F(ωA, ωB) and it is our new for-
mula for the dispersion interaction; its practical appli-
cation requires the solution of the coupled equations
(24, 25).

As a first test of Eq. (21) we consider the long range
dispersion interaction of two hydrogen atoms in their
ground state. In this case Q̂ is the dipole operator µ̂,
ĤA = ĤB, θA = θB, ωA = ωB = ω, and the formulae
(20, 21) reduce to

F(ω) = −2ω[G1(ω)]2 (26)

Hy(ω) = F(ω) − 2ω[G1(ω) − 2ωG2(ω)]2 (27)

We remind that for two atoms in S states [2]
C6 = 6 〈ZZ|ZZ〉AB, where we used the following nota-
tion for matrix elements (4) involving the cartesian com-
ponents of the dipole operator:

〈XY|XY〉AB =
〈
θA

X θB
Y |

(
ĤA − EA

0 + ĤB − EB
0

)−1

θA
X θB

Y

〉

AB
(28)

θA
X =

(
µ̂A

X − 〈ΦA
0 |µ̂A

X |ΦA
0 〉A

)
ΦA

0 , etc (29)

Explicit formulae of the matrix elements Gk for hydro-
gen atom are given in [10] in terms of hypergeometric
functions and the quantity (26) can easily be computed.
In Fig. 1 we report: (i) the new functional (curve F)
Eq. (26), (ii) Hylleraas’ functional (curve Hy) Eq. (27)
and (iii) the exact value (line Ex). By numerical solu-
tion of the Eq. (24) for ωA = ωB = ω we find the
optimal value ω̄, and from it we compute C6 = −6F(ω̄).
The results are ω̄ = 0.439529 and C6 = 6.49711, i.e.
the value reported by Maeder and Kutzelnigg [6]. Using
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Fig. 1 Different approximations to the 〈ZZ|ZZ〉AB matrix ele-
ment for interacting hydrogen atoms as functions of ω: curve F,
new formula Eq. (26), curve Hy, Hylleraas’ functional Eq. (27).
The line labelled (Ex) marks the exact value. All quantities are in
atomic units

C6 = 6.49903 as the exact value for H · · · H dispersion
constant truncated to five decimals, we have an error of
0.02%. The exact C6 has been independently obtained
by many authors, see, e.g. [11–16] with a high number of
decimals.

The new functional Eq. (26) appears to be more sen-
sitive than Hylleraas’ to displacements of ω from the
minimum ω̄. As expected, ω̄ is greater than the first
excitation energy of hydrogen (0.375 h).

3 The dispersion interaction between two systems
at Full CI level

In the FCI case, the functions Φσ
0 , θσ , Φ̃σ , and

σ = A, B are expanded, for each molecule, in a basis of
orthonormal Slater’s determinants ςσ

k , k = 1, 2, . . . Nσ

as follows:

Φσ
0 =

Nσ∑
k=1

ςσ
k cσ

k = (ςςςσ )Tcσ ,

θσ =
Nσ∑
k=1

ςσ
k bσ

k = (ςςςσ )Tbσ (30)

The perturbative Eq. (1) is replaced by
[
(HA − EA

0 ) ⊗ IB + IA ⊗ (HB − EB
0 )

]
Φd = −bA ⊗ bB

(31)

bA = (EA
1 − QA)cA, bB = (EB

1 − QB)cB (32)

where Hσ , Qσ are the matrices of hamiltonian and mul-
tipole operators in the FCI space of molecule σ and ⊗ is
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Kronecker’s product. The vector Φd stands to the exact
solution of Eq. (1) as the Full CI eigenvector to the
exact solution of the molecular Schrödinger’s equation,
and the matrix elements computed from it according to
Eq. (4) are the natural benchmark to test the rank-1
approximation.

We describe first how the benchmarks have been
computed in this work and then we present the rank-1
approximation. We used the numerical method pro-
posed in [17] that will be, here, briefly reminded. The
solution Φd is expanded as a linear combination of
Kronecker products of vectors zA

p , zB
q belonging to the

FCI spaces of molecule A and B respectively:

Φd =
∑
pq

cpq zA
p ⊗ zB

q (33)

The coefficients cpq are determined by variational prin-
ciples. The number of components of Φd is equal to the
product NA NB of the FCI’s dimensions, i.e. it is really
huge, but only the vectors zA

p , zB
q need to be handled in

the computer code. The expansion vectors are solutions
of perturbative equations of the type

(HA − EA
0 + ωi)

kzA = bA; i, k = 1, 2, . . . etc. (34)

at a set of frequencies ω1, ω2, . . . for k = 1, 2, . . .. For
k = 1, Eq. (34) is required to compute the polarizability
of one of the interacting molecules. A satisfactory con-
vergence requires a dozen or so of vectors [17]. Once
Eq. (31) is solved, the matrix elements of interest are
computed as
∑
pq

cpq

[
(bA)TzA

p

] [
(bB)TzB

q )
]

(35)

which replaces Eq. (4). The quantities computed using
the Eqs. (33) and (35) will be, here, referred to as ‘full
rank’.

Alternatively, we could have used the classical
Casimir–Polder numerical integration. As discussed in

[17], in a FCI context the method here used presents
some advantages, including variational bounds and
better convergence. Here we will only remind that
Casimir–Polder numerical integration is included in
Eq. (35) as a particular choice of expansion vectors
and a non variational choice for the coefficients
cpq = δpqwp/2π , wp being the weigths of the numeri-
cal quadrature. A comparison of the computational cost
of the procedures will also be given in Sect. 4.

In this FCI context the rank-1 ansatz Eq. (18) becomes

Φ̃
d = −(ωA + ωB)zA ⊗ zB (36)

where zA, zB are functions of ωB, ωA, defined as solu-
tions of Eq. (34) for k = 1 and at the values ω̄A, ω̄B,
determined by solving Eqs. (24) and (25) by Newton’s
or similar methods. The matrix elements of Eq. (4) are
computed as

(ωA + ωB)
[
(bA)TzA(ωB)

] [
(bB)TzB(ωA)

]
(37)

We remark that this formalism applies to any linear
space expansion of the molecular wavefunctions, e.g.
truncated CI’s.

3.1 The interaction of two atoms at Full CI level

We examined the dipole–dipole dispersion interaction
of He and Li. The details of the FCI calculations, per-
formed in D2h symmetry using the method described in
[18], are reported in Table 1. ∆E is the excitation energy,
α is the dipole polarizability and TRK is the Thomas–
Reiche–Kuhn sum rule test [9]. Energies are in hartree,
polarizabilities in a3

0 (4πε0 = 1), see [2].
Table 2 reports the results for the dispersion constant

C6 for H, He, Li atoms in their ground states. C6 FRk
is the full rank value computed by numerical solution
of Eq. (31) using the method of Ref. [17], i.e. Eq. (35);
C6 Rk1 is the rank-1 value computed using Eq. (37) at the
values ω̄A, ω̄B fulfilling Eqs. (24) and (25). The error of

Table 1 Details of the FCI computations on helium and lithium atoms

He: basis spdfg ACV5Z 80 AO’s

State N Energy ∆E α TRK
He 11S 964 –2.903201 0.0 1.38299a 2.0022136
He 11P 840 –2.046357 0.856843 – –
Li: basis spdfgh CC-PV5Z 105 AO’s
State N Energy ∆E α TRK
Li 12S 76,604 –7.473439 0.0 164.3666b 3.007456
Li 12P 73,328 –7.405518 0.067920 –

N is the number of the Slater determinants of the FCI in D2h, ∆E is the excitation energy, α is the dipole polarizability and TRK is the
Thomas–Reiche–Kuhn sum rule test [9]. Energies are in hartree, polarizabilities in a.u. a3

0, see [2]
a Compare with αbest = 1.383192174 from [19]
b Compare with αbest = 164.111 from [19]
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Table 2 Computed values of
C6 and excitation energies ω̄

for He and Li atoms

FRk means full rank or bench-
mark value, Rk1 means rank-1
approximation

He· · · He Li· · · Li He· · · Li

C6 FRk 1.459408 1397.7220 22.53555
C6 Rk1 1.458047 1397.4516 22.52031
Error(%) 0.09 0.02 0.07
ω̄He 1.068711 – 0.987229
ω̄Li – 0.0696635 0.0861086
C6 best [19] 1.460978 1393.39 22.507

Table 3 Computed values of
C6 and excitation energies ω̄

for H–He and H–Li

Rk1 means rank-1
approximation

H · · · X

X=He X=Li

C6 Rk1 2.818852 66.61342
ω̄H 0.453498 0.423520
ω̄X 1.02438 0.0759371
ω̄X−X 1.068711 0.06966351
ω̄H−H 0.439529
C6 best [19] 2.821343 66.536

Table 4 Details of the FCI
calculations of LiH and HF

The LiH bond length is
assumed 3.015 bohr, the AO
basis amounts to 58 CGTO,
(10s6p4d/6s4p3d)+1f for Li
and (6s4p/4s3p)+2d for H. As
concerns HF, the bond length
is 1.73289795 bohr, the AO
basis is the 24 CGTO Z3
6s3p/3s1p of Sadlej et al. [21],
and the 1s2 is frozen
a Re = 3.00 [23]
b Re = 1.7328 [24]
c Re = 1.7325 [25]

Molecule State N Energy ∆E

LiH 11Σ+ 697,753 –8.036925 0.000000
LiH 21Σ+ 697,753 –7.906196 0.130730
LiH 11Π 683,072 –7.869563 0.167363
Electrical properties of LiH 11Σ+

µ α‖ α⊥ ᾱ

This work 2.316 26.666 30.531 29.242
Tunega et al. [22] 2.294 25.79 29.57 28.31
Cafiero et al.a 2.2918 25.50 – –

Molecule State N Energy ∆E

HF 11Σ+ 19,602,925 –100.180684 –
HF 21Σ+ 19,602,925 –99.641963 0.538721
HF 11Π 19,602,700 –99.798913 0.381771
Electrical properties of HF 11Σ+

µ α‖ α⊥ ᾱ

This work 0.6808 6.142 5.267 5.559
Maroulis b 0.7043 6.36 5.22 5.60
Cybulski et al. c – – – 5.918
Kumar and Meath DOSD [27] – – 5.60

the rank-1 ansatz, defined with respect to C6 FRk, is very
small, less than 0.1%. In the same table the best value
C6 best available in the literature (to our knowledge) is
also reported [19].

In Table 3 we report the results for the dispersion
interaction H· · · X, where X = He, Li treated at the Full
CI level, while for H atom the (exact) closed formulae of
[10] were used. In this case we did not compute the quan-
tity corresponding to C6FRk, and therefore the error is
omitted. However, we expect a behaviour similar to that
reported in the previous Table 2.

As concerns the naure of the stationary point of func-
tional (21) we found minima when A = B and saddle
points for A 	= B.

3.2 The interaction of two molecules at Full CI level

We report the results of calculations on LiH and HF.
The AO bases considered are of lower quality than
those used for the atomic calculations, but we think
that they illustrate as well the properties of the rank-1
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Table 5 Dispersion matrix
elements, optimal values ω̄

and isotropic dispersion
constant C000

6 for LiH . . . LiH
and HF . . . HF.

LiH · · · LiH

〈ZZ|ZZ〉AB 〈XZ|XZ〉AB 〈XX|XX〉AB C000
6

FRk 18.09143 20.60035 23.51265 129.696
Rk1 17.98009 20.52519 23.46179 129.285
Error(%) 0.62 0.36 0.22 0.32
ω̄x – 0.230753 0.23339 –
ω̄z 0.214973 0.216282 – –

HF · · · HF

〈ZZ|ZZ〉AB 〈XZ|XZ〉AB 〈XX|XX〉AB C000
6

FRk 3.893080 3.367922 2.914873 19.350
Rk1 3.887938 3.363141 2.910361 19.321
Error(%) 0.13 0.14 0.15 0.15
ω̄x – 0.920939 0.923855 –
ω̄z 0.884558 0.887147 – –

Method Author C000
6

DOSD Kumar and Meat [27] 19.00
Pseudo DOSD Knowles and Meath [26] 16.487
MBPT Rijks et al. [28] 20.75
Scaled TDHF Cybulski et al. [25] 19.20

ansatz. In Table 4 we report the details of the FCI
calculations; both were performed in C2v symmetry using
the method described in [18]. The LiH bond length is
assumed to be 3.015 bohr, the AO basis amounts to 58
CGTO, (10s6p4d/6s4p3d)+1f for Li and (6s4p/4s3p)+2d
for H and it is the same used in [20]. As concerns HF,
the bond length is 1.73289795 bohr, the AO basis is the
24 CGTO Z3 6s3p/3s1p of Sadlej et al. [21], and the 1s2

was kept frozen. In this case the AO basis is rather small,
although optimized for polarizability calculations.

In Table 5 we display the computed values of matrix
elements for the LiH· · · LiH and HF· · · HF dispersion
constants. As concerns notation, we use Eq. (28) with
Z axis parallel to the bond. The isotropic dispersion
constant C000

6 = 2
3 (〈ZZ|ZZ〉AB +4〈XZ|XZ〉AB +4〈XX|

XX〉AB) is also reported.
As concerns the naure of the stationary point of func-

tional (21) we found minima only when A = B and the
matrix element is of type 〈XX|XX〉, i.e. the same dipole
component on both molecules; in all other cases, saddle
points. The error of the rank-1 approximation is again
small (<1%), although larger than for atoms. In case of
HF there are a number of values of C6 available in the
literature that can be compared with those computed in
this work; they are reported in the lower part of Table 5.
The values of C000

6 computed show remarkable agree-
ment with the ‘experimental’ DOSD value of Kumar
and Meat [27] in spite of the small size of the Z3 basis
set.

4 Discussion and conclusions

From the data reported in Tables 2, 3 and 5 the rank-1
ansatz appears to provide an extremely good approxi-
mation to the full rank results, confirming the predic-
tions of Kutzelnigg et al. [5–8]. As a further remark to
this point, we remind that Eq. (31) can be cast in the
form of a matrix Sylvester equation with a rank-1 right
hand side [17]. The latter are well known in the field of
optimal control theory and mathematical arguments to
explain this behaviour can be found, e.g. in [29].

As far as computational cost is concerned, we can
compare three different procedures for the computation
of dispersion constants in the context of FCI, namely:
(A) computing the polarizability at a set of imaginary
frequencies and using the values in a Casimir–Polder
numerical quadrature; (B) using the ‘full rank’ numeri-
cal method of solution here used to provide the bench-
mark and described in [17]; (C) solving Eqs. (24) and
(25) and using the rank-1 formula (37). The compari-
son between methods A and B has been given in [17],
but it will be here reminded for sake of completeness.
All alternatives require the same basic ingredients, i.e.
the FCI wavefunctions of the monomers and a num-
ber of solution vectors of perturbative equations for
computing frequency dependent polarizabilities of the
monomers. The computational cost is dominated by the
application of the hamiltonian H to a vector x to produce
the vector y = Hx, also known as the σ -vector [30]. Let’s
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call Cσ this cost and, for sake of simplicity, consider the
computation of a matrix element 〈XZ|XZ〉AB contrib-
uting to C6 between two molecules.

(A) In the Casimir–Polder method we solve iteratively n
perturbative equations at a prescribed set of imag-
inary frequencies {iω1, iω2, . . . iωn}. Assuming an
average number of iterations M per point, we have
a computational cost 2nMCσ for each monomer,
where the factor two is due to the complex fre-
quency. The total cost is therefore 4nMCσ .

(B) For each imaginary frequency {iω1, iω2, . . . iωn} we
get a solution that gives two expansion vectors
for Eq. (35), i.e. its real and imaginary parts. For
each expansion vector another ‘fundamental oper-
ation’ is required [17], and this brings the cost to
4n(M + 1)Cσ . However, as shown in [17] method B
converges faster than A, i.e. a smaller number of
frequencies is needed to get results of the same
quality; roughly speaking, about a half. The cost
can be estimated as (M + 1)/2M that of method A.

(C) As shown in Fig. 1 for H...H, the functional F
depends critically upon the values of ωA, ωB and
the coupled Eqs. (24) and (25) must be solved by
Newton’s or similar methods. Each Newton itera-
tion implies the solution of two perturbative equa-
tions at real frequency for the monomers, with cost
2MCσ . The critical factor is the number N of
Newton’s iterations required, which in turn depends
upon the starting values of ωA, ωB. Since we do
not know any prescription to define good start-
ing values, the total cost 2NMCσ is rather unpre-
dictable. In our experience, starting from values
close to the first excitation energies, we found on
the average costs smaller than but comparable to
method B. This feature limits the value of the rank-
1 method as a practical computational tool. More-
over, while A and B converge to the same result,
method C is only an approximation to it, although
very accurate.

Therefore we think that method B should be pre-
ferred in a FCI context as a computational tool; the
rank-1 approximation owes its interest to the capability
to include a surprising accuracy to the common result of
A and B in a very simple formula Eq. (21).

Given this performance of Eq. (21), it is tempting to
look for some physical significance hidden in it, but we
were not able to find one. However we can find a con-
nection with London’s formula [2,32,33] for C6. For this
purpose, we remind that the dynamic polarizability is
related to Eq. (19) as follows:

α(ω) = G1(ω) + G1(−ω) (38)

as a result of a perturbation theory treatment with a
time dependent harmonic field of frequency ω [31]. Since
ω > 0, Eqs. (21) and (26) involve only the first term
G1(ω) of (38), that one called anti-resonant because it
is without poles. Following Tang [34], we use Padé [0/1]
approximation to G1(ω), and write

G1(ω) ≈ α/2
1 + ω/U

(39)

where α is the static dipole polarizability and U is an
effective excitation energy, i.e. we adopt Unsöld’s
approximation [35]. The functional Eq. (26) becomes

F(ωA, ωB) ≈ −1
4
(ωA + ωB)

αAαB

(1 + ωB/UA)(1 + ωA/UB)

(40)

and by minimization we find for the optimal ω’s:

ωA =UB, ωB =UA, and Fmin =−1
4

UAUB

UA+UB
αAαB

(41)

The C6 dispersion constant for two atoms in S states
becomes

C6 = −6Fmin = 3
2

UAUB

UA + UB
αAαB (42)

which is precisely London’s formula.

Table 6 Comparison of Unsöld mean energies U computed from C6 via Eq. (42) and rank-1 ω̄ values from Eqs. (24) and (25)

System H . . . H He . . . He Li . . . Li He . . . He Li . . . Li

C6 6.499027a 1.458047 b 1397.452b 1.460978 c 1393.39c

α 4.5a 1.38299 164.367 1.383192c 164.111c

U 0.427919 1.016418 0.068968 1.018163 0.0696635
ω̄ 0.439529 1.068711 0.068982 – –
IE 0.5 0.903257 0.130096 – –

The ionization energy values IE are also reported in the last row. All quantities in atomic units.
a Exact [15]
b Rank-1, this work
c From [19]
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To our knowledge, no practical prescription to com-
pute the Unsöld energies UA and UB is available and
they are usually obtained a posteriori from C6 using
Eq. (42). Eqs. (24) and (25) provide an independent
definition of effective mean energies ω̄A, ω̄B. It might
be interesting to compare these values with UA, UB
obtained from Eq. (42). In Table 6 we report such com-
parison for H, He and Li atoms; from these data we see
that Unsöld energies U and ω̄ values are similar; this is
a test of the accuracy of Eq. (39). As already noticed by
Norman et al. [36], these Unsöld energies exhibit large
variations from atom to atom. A relation between U
and the ionization energy IE has also been advocated
[36]. However, a comparison of U with IE (computed at
FCI level) values reported in the same Table 6 does not
suggest any simple relation between these quantities.

To conclude, the rank-1 ansatz provides a simple and
accurate formula for the matrix elements required to
compute the dispersion constant C6 Eqs. (21) and (26);
lower accuracy is obviously expected for the non-
isotropic constants CLMN

6 involving differences among
matrix elements. Moreover, the rank-1 ansatz also pro-
vides a mathematical definition of the effective energies
ω̄A, ω̄B playing the role of Unsöld energies. The practi-
cal value of the formulae is limited by a computational
cost comparable to that of the full rank solution of the
perturbative equation.
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Appendix 1

Consider the function

f (x, y) = 3G3(y)x2 − 4G2(y)x + 2G1(y) (43)

for real values x > 0, y > 0. The vanishing f (x, y) = 0
results in a 2nd degree equation in x. Since Gk(y) > 0,
f (x, y) can vanish only if the discriminant

∆ = −24[G1(y)G3(y) − (G2(y))2] − 8(G2(y))2 (44)

is greater than zero. But G1(y)G3(y) > (G2(y))2 by the
Cauchy–Schwarz inequality, and therefore ∆ < 0.
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